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Abstract. Different characteristics of an output signal (average position, population, average
energy) are calculated for a particle moving in a piecewise potential and subject to external
periodic and random forces. Particular emphasis has been placed on the dependence of these
characteristics on the strength of the noise and the frequency of an external field. An external
periodic force strives to equalize the populations of the discrete levels, or even to reverse the
populations for the space-extended systems. The populations of the potential wells in a one-
barrier system subject to oscillation of the wells can either decrease or increase (compared
with the field-free case) depending on the frequencies of the external field. All these changes
of populations induced by an external field have some resemblance to the similar quantum
mechanical problems.

1. Introduction

An investigation of dynamic systems subject to a periodic and/or random field has attracted
considerable interest. The distinguishing feature of these phenomena is a non-monotonic
dependence of an output signal on one or more parameters that characterize a random
force or an external periodic signal. The latter are described under the common name
‘stochastic resonance’ (resonance activation, coherent stochastic resonance, etc) [1]. The
quantitative description of these nonlinear systems usually requires numerical simulations
while analytical solutions can be found only in some exceptional cases.

Recently [2–4], we have presented analytical solutions for one-dimensional diffusion of
a classical particle through a bistable piecewise potential. For the time-independent problem,
we considered the influence of reflecting walls and barrier heights on the transmission of the
particle, the asymptotic behaviour for small and large time, comparison with the Kramers
escape rate [2], as well as resonance tunnelling through a double barrier [3]. For the time-
dependent problem (one potential well subject to a periodic signal), the phenomenon of
stochastic resonance occurs and the signal-to-noise ratio turns out to be a non-monotonic
function not only of the noise strength but also of the frequency of the external field [4].

This paper deals with the analysis of manifestations of stochastic resonance by
comparing the analytical solutions for different time-dependent problems. The special
form of the matching conditions described below allows us to consider a wide range of
phenomena which were beyond the techniques used in [4]. This form of matching conditions
is particularly suited to geometrically restricted systems with reflecting or absorbing walls
and for the solutions asymptotic in time where the initial conditions have already been
washed out. Although our analysis is restricted by these two limitations, we consider and
compare the following different models: two-level discrete and space-extended models,
systems with a step potentials with those with a barrier potential, a one-barrier potential
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9774 V Berdichevsky and M Gitterman

with oscillating well and with an oscillating barrier, and systems of two wells with equal
and different potential barriers.

For all the above-mentioned systems, we find the exact solutions of dynamic problems
which allows us to calculate the different characteristics of an output signal, namely, both
the time-independent and oscillating parts of asymptotic populations, the average energy
of the output signal, and its average position in the well. Then, we check which of these
characteristics show non-monotonic behaviour as a function of the noise strength and the
frequency of an external field for different forms of the potential.

The general idea of our approach is illustrated in the next section by means of the simple
two-state discrete model subject to an external periodic field.

2. Two-state system subject to periodic perturbations

There are many applications in science for the simplest model of a system which can be
found either in the ‘left’, (populationn1), or in the ‘right’, (populationn2), states where
n1+ n2 = 1.

A rate equation describing the dynamics of a two-state system has the following form:

dn1

dt
= −dn2

dt
= W2n2−W1n1 = W2− (W1+W2)n1 (1)

whereW1(2) is the transition rate out of state 1(2). In the absence of an external field,
the rates usually have the Arrhenius form,W 0 ∼ exp(−U

T
), whereU is the height of the

potential barrier andT is the temperature (in units of energy) which sometimes is replaced
by the noise intensityD if the transition between the two states is initiated by non-thermal
noise. We consider the case when, say, the left state is less stable, i.e. the potential barrier
U1 for transmission to the right state is lower thanU2 for the reverse transition,U1 < U2.
If we denote

W 0
1 ∼ exp

(
−U1

D

)
W 0

2 ∼ exp

(
−U2

D

)
(2)

then, after some transient process, one gets fort →∞

n1,∞ = W 0
2

W 0
1 +W 0

2

n2,∞ = W 0
1

W 0
1 +W 0

2

(3)

i.e.n1,∞ < n2,∞—the left ‘shallow’ state contains fewer particles then the right ‘deep’ state.
The influence of the external periodic field is usually described by the modulation of

the energy levels, i.e.U1 andU2 are replaced byU1 + A cos(�t) and byU2 − A cos(�t),
respectively. Then, the positions of the potential minima will oscillate in antiphase with the
period of the external field. Another possibility is that the potential barrier oscillates while
the energy levels remain fixed. Then, one has to replaceU1 andU2 by U1+A cos(�t) and
by U2+ A cos(�t), i.e. the barriers oscillate in phase.

Substituting the antiphase modulation of the wells,U1+A cos(�t) andU2−A cos(�t),
in the rate equation (1), one can rewrite the latter as

dn1

dt
+
[
W 0

1 exp

(
A cos(�t)

D

)
+W 0

2 exp

(
−A cos(�t)

D

)]
n1 = W 0

2 exp

(
−A cos(�t)

D

)
.

(4)
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After some transient period, the initial conditions of equation (4) will be washed out,
and the solution becomes periodic in time.

n1 = n1,∞ +
∑
m

[Rm cos(m�t)+ Sm sin(m�t)] = n1,∞ +
∑
m

√
R2
m + S2

m sin(m�t + φm).

(5)

Using the expansion of exp(±A cos(�t)
D

) in a series of modified Bessel functions of the
first kind [5] yields

exp

(
±A cos(�t)

D

)
=

∞∑
l
.=−∞

Il

(
±A
D

)
cos(l�t). (6)

Substituting both (5) and (6) into (4), one can find the recursive relations forn1,∞,
Rm andSm, as was done in similar problems [6, 7]. Truncating the recursive relations at
m = 0, 1, 2 . . . , one obtains the sets of coefficients in equation (5) which corresponds to
increasing powers ofA

D
, i.e. of the amplitude of an external field. Omitting straightforward

calculations, we write the final results up to the lowest order in the field amplitude, i.e. to
first order forA1 andB1, and in second order forn1,∞:

n1,∞ = W 0
2

W 0
1 +W 0

2

+ A2

D2

W 0
1W

0
2

�2+ (W 0
1 +W 0

2 )
2

W 0
1 −W 0

2

W 0
1 +W 0

2√
R2

1 + S2
1 =

2AW 0
1W

0
2

D(W 0
1 +W 0

2 )

√
�2+ (W 0

1 +W 0
2 )

2
.

(7)

In all previous analyses [6, 7, and others], the two stable states (W 0
1 = W 0

2 ) have been
considered and the limiting (t →∞) values ofn1,∞, n2,∞ did not change in the presence
of an external periodic field. The only influence of the field was to cause a periodic change
of the population of the two states described by the coefficientsRm andSm in equation (5).

As one can see from equation (7), in the presence of a field, the field-free expression for
n1,∞ contains an additional positive term (sinceW 0

1 > W 0
2 ). More positive terms will come

from the next order corrections inA
D

. Then, one obtains a quite unexpected result: the less
stable state becomes ‘more stable’ in the presence of an external periodic field. In fact, this
field tends not only to equalize the populations of two states: under some circumstances it
can even reverse them. We will consider this phenomenon in more detail in section 5.

The second conclusion which follows from equation (7) is the behaviour of the amplitude

of the oscillations,
√
R2

1 + S2
1, which is monotonic as a function of the external field

frequency�, but non-monotonic as a function of the noise strengthD.
Thus far, we have considered the oscillating potential minima. Quite different results

are obtained for the oscillating barrier. In this case, for both states the potential changes
are U1,2 + A cos(�t), and all but first terms in equation (4) have the same exponential
factor exp(A cos(�t)

D
). This factor can be eliminated from the equation by changing the time

variablet to τ = ∫ t0 exp(A cos(�z)
D

) dz, and one returns to equation (1) withW1,2 replaced by
W 0

1,2 and t replaced byτ . It is clear, therefore, that, in contrast to equation (7), the limit
t →∞ populations are not changed in the presence of an external field.

3. Basic equations

As was shown during the last 20 years, many fundamental properties of a particle moving
in a nonlinear potential under the influence of both periodic and random signals are generic,
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and are not too sensitive to the details of the potential. Therefore, it is worthwhile to
consider the simplest potential which allows an analytic solution, in addition to carrying out
numerical simulations for more complicated potentials.

We consider a particle moving in the piecewise potentialsU(x) under the influence of
white noise. We choose simple square-well potentials with one and two barriers restricted
by reflecting walls. In [2], we presented the full dynamic solution of these problems in
the absence of an external periodic field. In [4], we added a periodic signal acting on the
left potential well, and after some quite complicated mathematics, we found the analytical
solution (for small amplitude of the external field) for the signal-to-noise ratio. Since there
were no restriction on the frequency of periodic field, the new phenomenon found was the
non- monotonic dependence of the signal-to-noise ratio as a function of the field frequency.
In this article, we use a much simpler approach which allows a set of analytical solutions
for the asymptotic limitt →∞.

The Fokker–Planck equation for the probability functionP(x, t) for the positionx of a
diffusive particle at the timet is

∂P

∂t
= ∂

∂x

[
∂U

∂x
P +D∂P

∂x

]
≡ −∂J

∂x
(8)

where the probability currentJ is defined in equation (8).
For the piecewise potentials,∂U

∂x
= 0, equation (8) reduces to a simple diffusion equation.

Moreover, our choice for the periodic signal does not introduce an additional force in
equation (8) which still has the form of a simple diffusion equation. However, the periodic
signal enters the matching conditions, namely, one has to solve equation (8) in each region
of U(x) = constant, and then to ensure the continuity ofJ across the boundaries of these
regions. Continuity of probability currentJ, which according to equation (8) can be written
asJ = −De−

U
D

d
dx (e

U
D P ), means that at pointsz of the jumps of potentials,

e
U(z+0)
D P (z+ 0, t) = e

U(z−0)
D P (z− 0, t) (9)

∂P (z+ 0, t)

∂x
= ∂P (z− 0, t)

∂x
. (10)

The matching conditions (9) and (10) have to be complemented by reflected boundary
conditions at the positionsz of the walls,

∂P (z, t)

∂x
= 0. (11)

An external periodic signal enters the exponents in equation (9), i.e. the solutions of
equation (8) will be periodic in time with the period 2π�−1 of the external field.

Our main assumption is the smallness of the amplitude of the external field which
meansA

D
< 1. Therefore, we use expansion (6) in equation (9), and seek the solution of

equation (8) in each regionm as

Pm = S0
m +

∞∑
l=1

(
A

D

)l
f (l)m (x, t) (12)

wheref (l)m is a periodic function oft which can be written in the following form:

f (l)m = f (l)m,0+
∞∑
k=1

[(f (l)m,ke
rkx + f̃ (l)m,ke−rkx)ei�kt + c.c.] rk ≡

√
i�k

D
. (13)

As in the previous section, we will keep only the lowest non-vanishing corrections to
the field-free asymptotic probabilitiesSm in the amplitude of the external field. As we shall
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Figure 1. (a) One-step potential of heightV0. The right side is oscillating with frequency�.
Both (b) one-barrier and (c) two-barrier symmetric potentials reduce to one-step potential by
the use of the dotted line(s).

see, the time-independent first-order corrections in the field vanish. Therefore, we also keep
the non-oscillating second-order terms in( A

D
), namely,

Pm = Sm + A

D

(
f
(l)

m,0+
∞∑
k=1

[(f (1)m,ke
rkx + f̃ (1)m,ke

−rkx)ei�kt + c.c.]

)
+
(
A

D

)2

f
(2)
m,0. (14)

It will be clear later that only terms withk = 1 are relevant in our approximation.
Further calculations depend on the form of the potential. The simplest form of the step-like
potential is considered in the next section.

4. One-step potential

The form of this potential of heightV0 with two steps of equal size (called 1 and 2 from
left to right) is shown in figure 1. The right side undergoes oscillations with frequency�.
Note that in the asymptotic limitt → ∞ considered here, where the initial conditions are
washed out, the one-step potential is the generic form of more general potentials. Indeed,
as one can see from figure 1, because of the symmetry, a one-barrier potential (with a
dotted section shown in figure 1) is a set of two one-step potentials, a two-barrier potential
(with two dotted sections) is a set of four one-step potentials, and so on. In all these cases,
only the barriers oscillate while the wells remain immobile. In section 5, we consider a
one-barrier potential with an oscillating well and immobile barrier.

The matching condition (9) at pointx = 0 for the probability functionsPm defined in
equation (14) has the following form:

S1+ A

D

(
f
(1)
1,0 +

∞∑
k=1

[(f (1)1,k + f̃ (1)1,k )e
i�kt + c.c.]

)
+
(
A

D

)2

f
(2)
1,0

=
(
S2+ A

D

(
f
(1)
2,0 +

∞∑
k=1

[(f (1)2,k + f̃ (1)2,k )e
i�kt + c.c.]

)
+
(
A

D

)2

f
(2)
2,0

)
e
V0+A cos(�t)

D .

(15)
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Expanding the exponential in powers ofA
D

and collecting terms containing appropriate
powers of the small parameterA

D
, one obtains in zero order (without external field)

S1 = S2e
V0
D . (16)

Adding to equation (16) the normalization condition
∫ 1
−1P dx = 1, which reduces to

S1+ S2 = 1, one gets

S1 = 1

1+ e−
V0
D

S2 = e−
V0
D

1+ e−
V0
D

. (17)

Collecting all terms of first order inA
D
, one obtains

f
(1)
1,0 +

∞∑
k=1

[(f (1)1,k + f̃ (1)1,k )e
i�kt + c.c.]

= e
V0
D f

(1)
2,0 + e

V0
D

∞∑
k=1

[(f (1)2,k + f̃ (1)2,k )e
i�kt + c.c.] + S2e

V0
D cos(�t). (18)

A comparison of the time-independent terms in equation (18), together with the
normalization condition which reduces tof (1)1,0 + f (1)2,0 = 0, leads tof (1)1,0 = f (1)2,0 = 0.

Collecting the coefficients of ei�kt in equation (18), we obtain

f
(1)
1,1 + f̃ (1)1,1 = e

V0
D (f

(1)
2,1 + f̃ (1)2,1 + S2/2) (19)

and an analogous equation for the complex conjugate.
Hence, only terms withk = 1 in the sum of equation (18) are affected by the external

field in the first approximation inA
D

. All other terms ink can be omitted, i.e. the probability
functionPm reduces to

Pm = Sm + A

D
[(fmerx + f̃me−rx)ei�t + c.c.] +

(
A

D

)2

gm. (20)

For simplicity, we omit the upper indices off (l)m and rewritef (2)m,0 asgm. The remaining
boundary condition (10) takes the form

f1− f̃1 = f2− f̃2 (21)

while the reflective boundary conditions (11) atx = −1 andx = 1 are

f1e−r − f̃1er = 0

f2er − f̃2e−r = 0.
(22)

Solving the four equations (19), (21) and (22), one gets

f1 = −f̃2 = e
V0
D

2(1+ e
V0
D )2(1+ e−2r )

f2 = −f̃1 = −e−2rf1. (23)

Separating from equation (15) the terms of second order inA
D

, one gets

g1 =
[
S2

4
+ 1

2
(f̃2+ f2+ c.c.)+ g2

]
e
V0
D . (24)

The normalization of the probability function was already calculated to zero-order terms
in A

D
. Therefore, for the second-order terms,g1 + g2 = 0. Using this latter condition and

equations (23) and (24), one gets

g1 = −g2 = −e
V0
D

4

(e
V0
D − 1)

(1+ e
V0
D )3

. (25)
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Figure 2. Amplification factorη for a one-step potential as a function of noise strengthD (for
� = 1, V0 = 1) and of the frequency� of an external field (forD = 1, V0 = 1).

The latter results mean that the time-independent shift to the probability distribution
function, which according to equation (12) is proportional to the square of the amplitude of
an external field, turns out to be negative for the left well and positive for the right well,
independent of frequency.

The averaged position of a particle is another interesting parameter. Using the results
obtained above, one gets

x̄(t) ≡
∫ 1

−1
xP (x, t)dx =

∫ 0

−1
xP1(x, t)dx +

∫ 1

0
xP2(x, t)dx = x̄0+ B cos(�t + ϕ) (26)

B = A

D

2De
V0
D

�(1+ e
V0
D )2

cosh
(√

�
8D

)2
− cos

(√
�

8D

)2

(
cosh

(√
�

2D

)2
− sin

(√
�

2D

)2
)1/2 . (27)

The first term in equation (26) describes the average position of a particle, whereas the
second term describes the periodic changes with the period of an external field.

The amplitude of the oscillations shows the non-monotonic dependence on the noise
strength and the monotonic dependence on the frequency of the external signal. In figure 2
we show the amplification parameterη ≡ |B|2

A2 as a function of the noise strengthD, which
is a manifestation of stochastic resonance, and of the frequency� of an external signal.

In contrast to the amplification factor, there exists another characteristic of the averaged
motion which shows non-monotonic behaviour both inD and�, namely, the average energy
〈E〉 of a signal which is proportional to〈( dx̄

dt )
2〉, i.e. to B2�2

2 . As one can see in figure 3,
the dependence of the averaged energy onD is much more profound than that on�.

Another function of interest is the probabilityW(t) to find a particle in one of the regions
of the step potential which is equivalent to populations in a two-level problem described in
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Figure 3. Average energy of an output signal for a one-step potential as a function of (a) the
frequency� of an external field (forD = 1, V0 = 1) and (b) the noise strengthD (for � = 1,
V0 = 1).

section 2. Hence, in the region [−1, 0]

W(t) ≡
∫ 0

−1
P1(x, t)dx = S1+

(
A

D

)2

g1+ A

D

[
(1− e−2r )

r
f1ei�t + c.c.

]
= 1

1+ e−
V0
D

−
(
A

D

)2 e
V0
D

4

(e
V0
D − 1)

(1+ e
V0
D )3

+A
D

e
V0
D

2

tanh(2r)

r(1+ e
V0
D )2

ei�t + c.c.

 . (28)

The external field corrections in equation (28) that contain the square of the amplitude
are negative, which means that the population of the more populated state is decreasing,
analogously to the two-level system described in section 2. Likewise, the amplitude of the
time-dependent corrections that is linear inA

D
is a monotonic function of the external field

frequency�, but non-monotonic as a function of the noise strengthD.
As it was emphasized above, because of the symmetry, the solutions (26), (27) and (28)

obtained for a step potential are, at the same time, solutions for one-, two- and many-barrier
potentials with oscillating barrier(s).

5. One-barrier potential with oscillating well

Figure 4 shows the square-well potential with the periodic signal acting on the left well. For
simplicity we consider symmetric barriers with two wells of equal size but with different
potential heightsU1 andU2.

The general method of solving the Fokker–Planck equation (8) for this case is very
similar to that used in the previous section for the step-like potential. The three different
regions in figure 4 with two matching conditions atx = 0 andx = 1, instead of two regions
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Figure 4. Square double-well potential with oscillating left well.

and one matching condition point in figure 1, make the solution slightly more cumbersome,
although the general matching equations (9) and (10) as well as the boundary conditions
(equation (11)) are the same in both cases.

We are seeking the solution of the Fokker–Planck equation in the form (20).
For zero-order inA

D
terms in (20), the matching conditions atx = 0 andx = 1 are

S1 = S2e
U1
D S3 = S2e

U2
D . (29)

Adding to (29) the normalization condition:

1=
∫ 0

−1
S1 dx +

∫ 1

0
S2 dx +

∫ 2

1
S3 dx = S1+ S2+ S3 (30)

one immediately obtains from (29) and (30):

S1 = e
U1
D

1+ e
U1
D + e

U2
D

S2 = 1

1+ e
U1
D + e

U2
D

S3 = e
U2
D

1+ e
U1
D + e

U2
D

. (31)

Repeating the analysis of the previous section, one finds that for the terms that are
first-order in A

D
, only terms withk = 1 in the sum are relevant to our problem, and the

probability distribution function in each of the regions 1–3 has the form (20). Using the
matching conditions (9) and (10) for this function, one has atx = 0 to first order inA

D

f1− f̃1 = f2− f̃2

S1

2
+ f1+ f̃1 = (f2+ f̃2)e

U1
D

(32)

and atx = 1:

f2er − f̃2e−r = f3er − f̃3e−r

(f2er + f̃2e−r )e
U2
D = f3er + f̃3e−r .

(33)

Finally, the reflecting boundary conditions (11) at the wallsx = −1 andx = 2 are

f1e−r − f̃1er = 0

f3e2r − f̃3e−2r = 0.
(34)
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Solving the six equations (32)–(34) for the six variablesf1, f̃1, f2, f̃2,f3 and f̃3, one
gets

f1 = −(e2r + 1)(e
U2
D + 1)K

f̃1 = −(e2r + 1)(e
U2
D + 1)e−2rK

f2 = −[e−2r (e
U2
D + 1)+ (1− e

U2
D )]K

f̃2 = [e2r (e
U2
D + 1)+ (1− e

U2
D )]K

f3 = 2e
U2
D e−2rK

f̃3 = 2e
U2
D e2rK

K ≡ 1

8

e
U1
D

(1+ e
U1
D + e

U2
D )(1+ e

U1
D + e

U2
D + e

U1+U2
D tanh2(r)) cosh2(r)

.

(35)

The matching conditions to second order inA
D

have the simple formg3 = g2e
U2
D at

x = 1, and a more complicated form atx = 0,

e−
U1
D

[
S1

4
+ Re(f1+ f̃1)+ g1

]
= g2. (36)

Adding to these equations the normalization conditiong1 + g2 + g3 = 1, and using
equation (35), one obtains

g1 = −(S2+ S3)

[
S1

4
+ Re(f1+ f̄1)

]
g2 = − g1

1+ e
U2
D

g3 = − g1

1+ e−
U2
D

(37)

where

Re(f1+ f̃1) = −1+ e−
U2
D

2e
U1+U2
D

H + sin2(a2) sinh2(a2)

4H

H − sinh2(a2)−sin2(a2)

4

H ≡ (1+ e
U1
D + e

U2
D )[sinh2(a1)+ cos2(a1)]2

e
U1
D + e

U2
D

+ sinh2(a2)− sin2(a2)

4

an2 ≡
√
n2�

2D
.

Equations (35) and (38) present a full solution of our problem to second order inA
D

.
We are able now to analyse all the physical quantities of interest.

Let us compare the time-independent probabilities (to( A
D
)2) for the left,n1,∞, and the

right, n2,∞, wells which are equivalent to populations in the two-level problem considered
in section 2:

n1,∞ =
∫ 0

−1
P1(x, t)dx = S1+

(
A

D

)2

g1

n2,∞ =
∫ 0

−1
P3(x, t)dx = S3+

(
A

D

)2

g3.

(38)
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If we assume, as shown in figure 4, that without an external field the left well had a
lower barrier than the right well,U1 < U2, one can reverse the population with the help of
an external periodic field. This will occur whenn1,∞ > n2,∞ which can be rewritten as

S3− S1 <

(
A

D

)2

(g1− g3). (39)

Note that for the last equation, we can take values off̃1, f̃1, S1 and S3 from
equations (31), (35) and (37), which gives(

A

D

)2 1+ 2e
U2
D

e
U2
D − e

U1
D

[
−Re(f1+ f̄1)− S1

4

]
> 1. (40)

The last inequality is satisfied when the factor in front of the brackets is large, and the
expression in brackets is positive. The former occurs whenA >

√
U2− U1, and the latter

holds for not too small frequencies.
Thus, we have obtained an interesting result: an external periodic force acting on

the ‘shallow’ well is able to transform it into the ‘deep’ well. This result has been
obtained analytically for a small periodic force and consequently only for very near minima.
However, one can expect that a stronger periodic signal would be able to reverse even more
distant minima.

In order to compare the results obtained in this section for the oscillating well with
those obtained in the previous section for the oscillating barrier, one has to consider two
barriers with equal heights, i.e. to putU1 = U2 in equations (35) and (38).

The essential difference between these two cases is that in the oscillating well case,
the second-order correctiong1 to the probability distribution function for the left well, in
contrast to equation (25), depends on the frequency� of an external field. Moreover, as
one can see from figure 5, this dependence is non-monotonic, reaching maxima and minima
at some frequencies, all of which has an interesting analogy with quantum systems.

Figure 5. Field-dependent part of population of the left well as a function of (a) the noise
strengthD (for � = 100; U1 = 2; U2 = 3) and (b) the frequency� of an external field (for
D = 0.7; U1 = U2 = 1).
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The population in the left well,n1,∞(t), has the following form:

n1,∞(t) ≡
∫ 0

−1
P1(x, t)dx = S1+

(
A

D

) ∣∣∣∣ f̄1(er − 1)

r

∣∣∣∣ cos(�t + φ)+
(
A

D

)2

g1. (41)

The non-monotonic dependence on frequency of the correction term which is second
order in the field (( A

D
)2g1 in equation (41)) has a resemblance to the enhancement of

tunnelling versus localization in quantum systems subject to an external field of different
frequencies [8].

The last quantity of interest is the average position of a particlex̄(t). For the case
considered here of an oscillating left well, one obtains

x̄(t) ≡
∫ 2

−1
xP (x, t)dx = x̄0+ A

D
|Z| cos(�t + ϕ) (42)

where

x0 = − 1
2(S1+ g1)+ 1

2(S2+ g2)+ 3
2(S3+ g3)

Z = −16f̄1er sinh2( r2)[e
U2
D cosh2( r2)+ 1

2 cosh(r)]

r2 cosh(r)(e
U2
D + 1)

.
(43)

The amplitude of the oscillations in equation (42) behaves monotonically with� and
shows the usual stochastic resonance as a function of the noise strengthD (figure 6).
Analogous to the results obtained in the previous section, the average energy〈E〉 is a non-
monotonic function of bothD and�.

All the non-monotonic behaviour mentioned above are manifestations of stochastic
resonance which was previously analysed in terms of the so-called signal-to-noise ratio
[4].

6. Summary

The distinctive characteristic of stochastic resonance (SR) is the non-monotonic behaviour
of the output signal-to-noise ratio (SNR) as a function of the noise strengthD for nonlinear
systems subject to an external periodic field and random signal [1]. SNR can also be a
non-monotonic function of the frequency� of an external field [4].

In a broad sense, SR means a non-monotonic dependence of different characteristics of
an output signal as a function of� and/orD. It is precisely these characteristics that are of
interest in our study.

Nonlinear features of SR pose major problems for the theoretical analysis of SR. A cure
for this difficulty is to choose the simplest geometry which still shows SR. We have chosen
the piecewise potential, for which the asymptotict →∞ behaviour for the field-free case
can be calculated exactly, and the corrections in the field amplitude are found in lowest
orders of perturbation theory.

We have started, however, with a two-level discrete systems where, in contrast to the
usual approach, the probabilities of transitions 1→ 2 and 2→ 1 are different, i.e. in the
absence of an external field, the two levels have non-equal populations ast →∞. It turns
out that, in addition to periodic changes of populations, an external periodic field strives for
equalization of the populations of two levels ast →∞, stabilizing the lower ‘metastable’
level.

This interesting result is supported in the last section by the analytical solution of the
space-extended one-barrier system with two wells of different heights. For this case, the
periodic signal acting on the left well is able to reverse the populations of wells. This
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Figure 6. Amplitude of the oscillation of the average position of a particle in the square-well
potential (divided byA) as a function of noise strengthD (for � = 0.1; U1 = 3; U2 = 2).

phenomenon is somewhat similar to the well known population inversion in quantum
mechanical problems. Looking for the analogy to the phenomenon described above in
classical mechanics one can mention the ‘Kapitza pendulum’ whose point of support
oscillates vertically which stabilizes the vertically upward position [9]

The main part of this work is devoted to one-barrier systems with an oscillating barrier
and with an oscillating well. We calculated the average position of the output signal and
the probability to be in one of the wells, which behaves similarly for these two cases being
monotonic as a function of the external field frequency�, but non-monotonic as a function
of the noise strengthD.

At the same time, we found another characteristic of the output signal: the average
energy of a signal that shows non-monotonic dependence on bothD and�.

The interesting difference occurs between the case of the oscillating barrier and that of
the oscillating well. In the former case the second- order correction in the field amplitude
to the populations is independent of� while in the latter case it shows the non-monotonic
behaviour as a function of�. Thus, for a field of some frequencies the tunnelling through
the barrier is enhanced, while for others the system becomes more localized in the presence
of a field which has some resemblance to the quantum tunnelling [8].

Our analysis extends the range of studies and possible applications of the intriguing
phenomenon of stochastic resonance.
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